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Abstract

This paper addresses the problem of unsupervised group
discovery in social networks. We adopt a nonparametric
Bayesian framework that extends previous models to net-
works where the interacting objects can simultaneously be-
long to several groups (i.e.,mixed membership). For this pur-
pose, a hierarchical nonparametric prior is utilized and in-
ference is performed using Gibbs sampling. The resulting
mixed-membership model combines the usual advantages of
nonparametric models, such as inference of the total number
of groups from the data, and provides a more flexible mod-
eling environment by quantifying the degrees of membership
to the various groups. Such models are useful for social infor-
mation processing because they can capture a user’s multiple
interests and hobbies.

Introduction
Given a social network, a common task is to discover group
structure within the network. Generally speaking, the ap-
proaches to group discovery (a.k.a., community finding)
break down along three classes: graph-theoretic (Newman
2004; Palla, Barabasi, & Vicsek 2007), compression-based
(Chakrabarti & Faloutsos 2006), and probabilistic (Kempet
al. 2006; Airoldi et al. 2006). In this paper, we present a
probabilistic approach that (1) is nonparametric and (2) ac-
counts for different mixtures of group memberships for each
object, over all possible groups that are present in the whole
network. These two characteristics make our model an ex-
cellent fit for social information processing.

A fundamental issue in all group discovery problems is
that the actual number of groups is unknowna priori. In
most cases, this is addressed by running the same model sev-
eral times with a different cardinality each time and selecting
the one that provides the best fit to the data (e.g., based on
a Bayes factor criterion in the case of Bayesian techniques).
Obviously, it would be preferable to develop techniques that
are able to infer the number of groups from the data and si-
multaneously examine hypotheses of different cardinalities.
So, we adopt a nonparametric Bayesian framework, which
provides a very flexible modeling environment, where the
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size of the model (i.e., the number of groups) can adapt to
the available data and readily accommodate outliers.

In this respect, our formulation is similar to the Infinite
Relational Model (IRM) (Kempet al. 2006). However, our
infinite mixed membership model(IMMM) is able to cap-
ture the possibility that objects belong to several groups and
quantify their relative degrees of membership. For this pur-
pose, it is perhaps more natural to talk with respect to iden-
tities rather than groups. In particular, we assume that each
object has an unknown identity which can consist of one
or more components. We attempt to discover those com-
ponents and estimate their proportions. Moreover, the pro-
posed framework combines all the advantages of standard
Bayesian techniques such as integration of prior knowledge
in a principled manner, seamless accommodation of missing
data, quantification of confidence in the output, etc.

Section 2 reviews IRM, which serves as the basis for fur-
ther developments. Sections 3 and 4 describe IMMM and
several experimental studies, respectively. We conclude the
paper in Section 5. It should also be noted that even though
the majority of this paper’s presentation is restricted to ob-
jects of a single type or domain (e.g.,people) and pairwise
binary links/connections of a single type (e.g.,is friend of),
the proposed framework can be readily extended to links of
various types between several domains. Furthermore, our
mixed-membership model can also be used to predict unob-
served/missing links among objects. For brevity, we have
omitted a discussion of this application.

Preliminaries
Consider a social network which contains observations
about links between objects of various types (e.g., people,
organizations, movies, etc). These links can be of various
types and take binary, categorical, or real values. With-
out loss of generality, we will restrict the presentation to
pairwise binary linksRi,j in a single domain (i.e. per-
son i is friend of personj) and follow the formalism in-
troduced in IRM (Kempet al. 2006). We present exam-
ples with two domains in subsequent sections. The basic
goal is to group the objects based on the observables, i.e.,
the links. A generative model can be defined which postu-
lates that the likelihood of any link between a pair of ob-
jects i and j depends exclusively on their respective iden-
tities Ii and Ij . In this respect, IRM is identical to the
stochastic block-model (Nowicki & Snijders 2001) which
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is based, however, on a fixed,a priori determined number of
groups and shares a lot of common characteristics with other
latent variable models (Handcock, AE, & Tantrum 2007;
Hoff, Raftery, & Handcock 2002). Formally, this leads to
the following decomposition of the likelihood function:

p(R | identities I) =
∏
i,j

p(Ri,j | Ii, Ij) (1)

The product above is over all pairs of objects between
which links (with value 0 or 1) have been observed (miss-
ing links are omitted). In a Bayesian setting, the individ-
ual likelihoods can be modeled with a Bernoulli distribution
with a hyper-parameterη(Ii, Ij). Furthermore, a beta distri-
bution Beta(β1, β2) can be used as a hyper-prior for each
η (Kemp et al. 2006). In fact, theη’s can be readily inte-
grated out which leads to a simpler expression for the like-
lihoodp(R | identities I) that depends only on the counts
m0(I, J), m1(I, J) of 0 and1 links between each pair of
identitiesI, J , respectively:

p(R | identities I) =
∏
I,J

beta(m0(I, J) + β1, m1(I, J) + β2)

beta(β1, β2)

(2)
wherebeta( , ) denotes the beta function.

Extensions to real-valued links can be readily obtained by
using an appropriate prior forp(Ri,j | Ii, Ij) (i.e exponen-
tial, gamma, etc). Furthermore, if a vector of attributesx(i)

is also observed at each objecti, then the likelihood can be
augmented as follows:

p(R, x | identities I) =
∏

i,j

p(Ri,j | Ii, Ij)
∏

i

p(x(i) | Ii)

(3)
and an appropriate prior can be defined for the individual
likelihoodsp(x(i) | Ii).

Since the number of identities is unknown a priori, a non-
parametric prior forIi’s is adopted. This is achieved by a
distribution over the space of partitions induced by a Chi-
nese Restaurant Process (CRP) (Antoniak 1974; Ferguson
1973). Of the several mathematical interpretations that have
appeared perhaps the simplest is the one in which the CRP
arises as the infinite limit of a Dirichlet distribution on the
K-dimensional simplex asK → ∞ (Neal 1991). A funda-
mental characteristic of the CRP is exchangeability, which
simply implies that the probability associated to a certain
partition is independent of the order in which objects are as-
signed to groups. Under the CRP, customers (which in our
case correspond to objects) enter a Chinese restaurant se-
quentially and are assigned to tables (which in our case cor-
respond to groups) according to the following conditional:

p(IN = t | I−N = t) =

{ nt
N−1+a

if nt > 0
a

N−1+a
if nt = 0

(4)

where IN and I−N are the group indicator variables of
objectsN and1, 2, . . . , N − 1, respectively andnt is the
number of objects already assigned to groupt. Hence the
N th object can be assigned to an existing group or to a new
group. The number of groups can therefore vary and the pa-
rametera controls the propensity of the model to create new
groups. Typically a gamma prior is adopted which leads
to a simple expression for the conditional posterior that can

then be used in Gibbs sampling (West 1992). Posterior in-
ference with respect to the latent variablesIi can also be
performed using Gibbs sampling (Escobar & West 1995;
Neal 1998). This simply makes use of the prior conditionals
(see Equation (4)) and the likelihood function (see Equation
(2)).

The IRM is a flexible and lightweight model for group dis-
covery. However, its most significant deficiency is that each
object can belong to only a single identity (or group) and all
the links that it participates in arise as a result of that iden-
tity. This assumption can be too restrictive, as in general, the
identity of each object does not consist of a single compo-
nent but rather of several components which co-exist at dif-
ferent proportions. For example, if the links are friendship
and the objects are people, then a person might be friends
with other people because they belong to the same social
group, or work for the same company, etc. This deficiency
is particularly noticeable if several link types are simultane-
ously considered such as is-friend-of, is-colleague-of, and
is-acquaintance-of, where depending on the type, each per-
son exhibits different identities with varying degrees. The
next section addresses this issue in detail.

Infinite Mixed-Membership Model
Mixed-membership models have been introduced to ac-
count for the fact that objects can exhibit several distinct
identities in their relational patterns (Airoldiet al. 2005;
2006). Posed differently, an object can establish links
as a member of multiple groups. This aspect is particu-
larly important in social information processing where so-
cial networks can be used for detection of anomalous be-
haviors/identities. It is unlikely that the objects of interest
will exhibit this identity in all their relations. It is of interest
therefore to find all the different identities exhibited but also
the degree to which these are present in each object’s overall
identity. These components can be shared among the objects
in the same domain but the proportions can vary from one to
another.

In order to capture the mixed-membership effect, we alter
the aforementioned model by introducing a latent variable
for each object and for each observable link that this object
participates in. LetRm

i,j be an observable link between ob-
jects i andj, wherem is an index over all available links.
We introduce therefore the latent variablesIi,m, which de-
note the identity exhibited by objecti in link m. (The index
m is redundant with respect to the definition of the link as the
participating objectsi andj suffice, but is used herein to fa-
cilitate the notation for the latent identity variables.) Similar
to the IRM (see Equation (1)), we assume that the likelihood
can be decomposed as:

p(R | I) =
∏
m

p(Rm
i,j | Ii,m, Ij,m) (5)

Hence, (in general) there are several latent variables, say
mi, associated with each objecti. Chinese restaurant pro-
cess priors can be used for each object with a parameter
ai. Although this would produce groupings for each object,
these groups will not be shared across objects and therefore
would not be relevant with respect to group discovery in
the whole domain. For that purpose we adopt a hierarchi-
cal prior, namely the Chinese Restaurant Franchise (CRF)
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(Tehet al. 2006). Based on the restaurant analog, customers
enter several restaurants belonging to a franchise and share
the same menu. Their group assignment is based on the dish
they end up eating which is determined in a two-step pro-
cess. First, the customers in each restaurant are seated based
on independent CRP’s. Therefore the table assignmentti,m
of customerm in restauranti is defined by:

p(ti,m = t | ti,−m) =

{ ni,t

mi−1+ai
if ni,t > 0

ai
mi−1+ai

if ni,t = 0
(6)

whereni,t is the number of customers seated at tablet in
restauranti and ai the parameter of the CRP pertinent to
restauranti. Once the seating has taken place, each table
in each restaurant orders sequentially a dish (common for
all the occupants of the table) from the common menu. The
probabilities are again independent of the order in which this
process takes place and are determined by a base CRP with
parametera0 (denoted byCRP0):

p(di,t = d | d−(i,t)) =

{ sd
M−1+a0

if sd > 0
a0

M−1+a0
if sd = 0

(7)

wheredi,t is the dish served at tablet of restauranti, sk
is the number of tables (over all restaurants) that have or-
dered dishd andM is the total number of tables (over all
restaurants). Based on the notation introduced the group as-
signmentIi,m is equal todi,ti,m i.e. the dish served at table
ti,m where the customerm of restauranti was seated. It be-
comes apparent that the CRPs at the restaurant level express
the mixed-membership effect while the baseCRP0 accounts
for the groups/identities associated with all the objects. The
model is summarized below:

CRP0 | a0 ∼ CRP (a0) (8)

Ii,m | ai ∼ CRP (ai, CRP0)

η(I1, I2) | β1, β2 ∼ Beta(β1, β2)

Rm
i,j | Ii,m, Ij,m, η ∼ Bernoulli (η(Ii,m, Ij,m))

Equations (6) and (7) readily imply how Gibbs sampling
can be performed for posterior inference with respect to the
latent variablesIi,m. The latter is not directly sampled but
instead we sample the auxiliary variablesti,m anddi,t. Fur-
ther details are contained in (Tehet al. 2006). It should
finally be noted that the posterior is a distribution on par-
titions and therefore exchangeable. If for example we have
three objects with a single latent variable for each object and
discover two groups, then the group assignment(1, 2, 1) is
equivalent (in the sense that the posterior likelihood is the
same) to(2, 1, 2). This complicates matters in the sense that
posterior inference across several samples cannot be per-
formed with respect to specific groups (as their labels might
change from sample to sample). We can however look at the
maximum likelihood (or maximum posterior) configuration
and calculate degrees of membership as described below.

Quantifying Degree of Membership
Consider a specific configuration drawn from the posterior
in which all latent variablesIi,m (the customers in our CRF
analog) have been associated with tables and dishes (i.e.
identities). We wish to calculate the degree of membership
of each object to each of the identities, sayK, that have been
found. Posed differently, if a new customermi + 1 arrived

ObjectSet Identity1 Identity2 Identity3
Set1 (Objects 1-10) 1.0 0.0 0.0
Set2 (Objects 11-20) 0.2 0.8 0.0
Set3 (Objects 21-30) 0.1 0.1 0.8
Set4 (Objects 31-40) 0.1 0.4 0.5

Table 1: Degree of membership matrix for synthetic data

at restauranti what would the probability be that he ends up
eating one of theK dishes?

If we consider a dishk then this probability can be decom-
posed into the sum two terms: a) probability that he eatsk
while seated to one of the existing tables, and b) probability
that he eatsk while being seated to a new table in restaurant
i which was created to accommodate only him. IfTi is the
number of existing tables at restauranti then the first term
pa would be:

pa =

T∑
t=1

p(ti,mi+1 = t) p(di,t = k) (9)

The second term in that sum would either be0 or 1 since all
the existing tables have already been assigned one of theK
dishes. The first term depends on theCRP (ai) and can be
calculated based on Equation (6).

Returning to the probability of the second component,pb
which corresponds to the event that the new customer is be-
ing seated at a new tableTi + 1 and is served dishk, then
this can be expressed as:

pb = p(ti,mi+1 = Ti + 1) p(di,Ti+1 = k) (10)

The first term above is given by Equation (6) and the sec-
ond from Equation (7) as it depends on the number of tables
already assigned to dishk.

Experimental Evaluation
This section describes our experiments on a variety of syn-
thetic and real data sets. Degrees of group membership
were calculated from the maximum likelihood configura-
tion, which was selected from10 independent runs with
20K MCMC iterations each. A standard version of simu-
lated annealing was used in order to avoid local modes with
an initial temperature of100 and a reduction factor of0.99.
In all experiments, the following hyper-priors were used: a)
for β1, β2 : independentPoisson(0.1), b) for a0 andai’s:
independentGamma(1.0, 1.0).

Synthetic Data Set
An artificial data set consisting of40 objects and3 identities
(or groups) was constructed. The objects were divided into
four sets (Set1 throughSet4) each consisting of10 objects.
The degree of membership of each set to the3 groups can
be seen in Table 1.

A matrix of probabilities of links between any pair of
identities was also generated from aBeta(0.1, 0.1) and
links were drawn. The full adjacency matrix was then given
to the model.

The degrees of membership of the four sets of objects for
the maximum likelihood configuration are reported in Ta-
ble 2. IMMM is able to quantify the mixed membership
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ObjectSet Identity1 Identity2 Identity3
Set1 (Objects 1-10) 0.90 0.06 0.04
Set2 (Objects 11-20) 0.14 0.82 0.05
Set3 (Objects 21-30) 0.10 0.12 0.78
Set4 (Objects 31-40) 0.16 0.30 0.53

Table 2: Degree of membership matrix for IMMM’s maxi-
mum likelihood configuration

effect with good accuracy. It should also be noted that the
maximum likelihood configuration from the IRM consists of
7 groups (and not3 groups), to which the respective objects
are assumed to belong exclusively (i.e.100% membership).

In order to more accurately compare the two models, we
calculated the similarity matrixP0 that expresses the prob-
ability that any pair of objects belong to the same group.
For example, the probability that an object fromSet2 is in
the same group with an object fromSet3 is (0.2 × 0.1) +
(0.8×0.1)+(0.0×0.8) = 0.1. This was compared with the
similarity matrices calculated by IRM (PIRM ) and IMMM
(PIMMM ) by averaging over the the posterior samples.
Figure 1 depicts the absolute values of the deviations, i.e.,
| P i,j

IRM − P i,j
0 | and| P i,j

mm − P i,j
0 |, ∀i, j. The errors are

much smaller for IMMM, particularly within theSet3 and
Set4 which exhibit the most significant mixed-membership
characteristics. In fact, the ratio of theFrobenius error norm
is ||PIMMM −P0||

||PIRM −P0|| ≈ 0.19.

Another comparison metric is thefull-sample log-score
(LSFS), which is defined as the average over all observable
linksRi,j (Chen, Shao, & Ibrahim 2000; Krnjajic, Kottas, &
Draper 2006). This metric is especially useful in real-world
data sets where the ground-truth is unknown. It is formally
defined as:

LSFS =
1
M

∑

Ri,j

log p(Ri,j | R, I, θ) (11)

whereI representsthe latent variables indicating the iden-
tities andθ the hyper-parameters (e.g., for the IRM,θ =
(β1, β2, a)). p(. | .) expresses the posterior predictive distri-
bution, which can be readily calculated by averaging over
the posterior samples. It should be emphasized that the
observablesR are not used twice but rather we choose to
evaluate the posterior predictive distribution at those points.
In contrast to the cross-validation log-scoreLSCV (Chen,
Shao, & Ibrahim 2000) (sometimes referred to asperplex-
ity) which requiresO(M) independent MCMC runs (where
M = the total number of observable links),LSFS can be cal-
culated using one MCMC run. Besides for largeM , leaving
a single observable out does not in general have a significant
effect. Furthermore, as it is discussed in detail in (Krnjajic,
Kottas, & Draper 2006),LSFS has favorable properties over
Bayes factors and is applicable to nonparametric models (in
contrast to other metrics such as theDeviance Information
Criterion). For our synthetic data, theLSFS values for the
IRM and the IMMM were -0.53 and -0.51, respectively. A
higherLSFS score denotes a more accurate model.
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Figure1: | P i,j
IRM − P i,j

0 | (top) and| P i,j
IMMM − P i,j

0 |
(bottom) for all pairs of objectsi, j. P i,j

M is the average over
posterior samples that modelM gives toi, j belonging to
the same group.M = 0 represents the true model. The
deviation matrix with entries closer to zero (i.e., the bottom
one) is modeling the data better.

Real Data Sets
We tested our model on three real social networks (namely,
Zachary’s Karate Club, U.S. Political Books, and MIT Re-
ality Mining)and one bipartite graph (namely, the animal-
feature graph). The latter shows how our model can be ex-
tended to data sets with more than one domain. A descrip-
tion of each data set follows next.

The Animal-Feature data set consists of two domains –
i.e., objects of two different types. In particular, the first do-
main is made up of 16 animals and the second by 13 fea-
tures (source: http://www.ifs.tuwien.ac.at/∼andi/somlib/).
Binary links indicate whether the animal has the particular
feature. The animal domain consists of two basic groups:
birds and 4-legged mammals. Some of the features are
shared between the two basic groups. For example, even
though the eagle is a bird, it has certain features with the
mammals such as its medium size, being a hunter, and not
being able to swim. Similarly, even though the cat belongs
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in the mammals, it shares the some features of small-sized
birds that cannot run.

Zachary’s karate club (Zachary 1977) is a well-studied so-
cial network. It consists of34 individuals which initially be-
longed to the same club but due to a disagreement between
the administrator (object 34) and the instructor (object 1)
ended up splitting into two as illustrated in Figure 2 (Girvan
& Newman 2002). The members that aligned with the in-
structor are marked with squares (group 1) and the members
that favored the administrator are marked with circles (group
2). Furthermore, Figure 2 give us an idea about the topology
of the network as described in (Girvan & Newman 2002).
For example even though individuals 3 and 13 belong to the
same group, the former seems closer to group 2 than the lat-
ter. For this data, we used a binary version of the friendship
links as observables for our mixed-membership model.

Figure2: Friendship network for Zacharys karate club (Gir-
van & Newman 2002)

The U.S. Political data set consists of105 political books
sold by an online bookseller in 2004. The data was assem-
bled by V. Krebs (source: http://www.orgnet.com/). Links
were created based on frequent co-purchasing of books by
the same buyers. The books have been assigned three labels
– namely, liberal, conservative and neutral – by M.E.J. New-
man (http://www-personal.umich.edu/∼mejn/) based on re-
views and descriptions of the books.

The MIT Reality Mining data set utilizes prox-
imity data for 97 individuals collected over a sin-
gle week during the academic year 2004-2005 (source:
http://reality.media.mit.edu/). Each person was given a cell
phone with a blue-tooth device that registered other blue-
tooth devices that were in close physical proximity. The in-
dividuals participating in this experiment were Sloan Busi-
ness School students, faculty, staff and students of the MIT
Media Lab as well as others. In the latter category we have
added a single object to represent all outsiders.

Table 3 depicts theLSFS scores for IRM and IMMM on
four real data sets. IMMM’sLSFS scores are greater than
IRM’s in all four cases. (Again higherLSFS scores indicate
a better model.)

Discussion For the Animal-Feature data, Figure 3 depicts
the comparison of the two rows of the similarity matrix as

Dataset IRM IMMM
Animal-Feature -0.30 -0.29

Zachary’s Karate Club -0.15 -0.13
U.S.Political Books -0.15 -0.09

RealityMining -0.27 -0.23

Table 3: Full-sample log-scoreLSFS on real data sets

calculated by IRM and IMMM. In particular, we calculated
the posterior probabilities that the eagle and the cat belong to
the same group with any other animal in the domain. Since
this is an unsupervised learning task, the values of those
probabilities are important in a relative sense rather than ab-
solute. As it can be seen, the IRM assigns high values that
the eagle belongs to the same group with the other birds but
practically zero for the mammals. This is a direct conse-
quence of the inability of the IRM to capture the possibility
that the eagle might simultaneously belong to another group.
The results are significantly better with IMMM which pre-
dicts higher probabilities that the eagle is in the same group
with the rest of the birds, but also has considerable similar-
ities with the mammals reflecting the fact that some of the
features are common. For example, eagles are of medium-
size like fox, dog, and wolf; they also hunt like some of the
cat-family members. Similar results are observed in the case
of the cat where the IMMM is shown to have superior per-
formance.

Figure3: Posterior probabilities that the eagle (top) and the
cat (bottom) belong to the same group with any of the other
animals in the data set.

For Zachary’s Karate Club data, IMMM’s maximum like-
lihood configuration identified4 groups/identities. IRM’s
maximum likelihood configuration identified7 groups. The
degrees of membership for each object are depicted in Fig-
ure 4. One can observe that identity 1 corresponds to the
hard core of group 1, which consists primarily of the in-
structor (person 1) and to a lesser extent by 2, 4, 5, 6, 11.
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Identity2 represents the “outer layer” (or soft core) of group
1 (i.e. the remaining members of group 1). Similarly, iden-
tity 3 denotes the outer layer of group 2. Finally, identity
4 consists of the administrator (34) and a few other closely
related individuals such as 33, 24, 25, 26, etc. It is important
to note that the model is able to quantify mixed-membership
effects. For example, person 3 belongs to group 1 but also
has a considerable number of links with the hard (person 33)
and soft (persons 10 and 29) cores of group 2; so it exhibits
all 4 identities (though primarily those of group 1). Simi-
larly persons 9, 10, 31, 32 (which belong to group 2) exhibit
in their identities a component of group 1 due to their rela-
tions with other people from that group.

Figure 4: Friendship network for Zacharys karate club.
Identities associated with the maximum likelihood config-
uration from IMMM.

Conclusions
Bayesian latent variable models provide a valuable tool for
social network analysis in such tasks as group discovery and
link prediction. Their descriptive ability is significantly in-
creased by using nonparametric priors, which allow for the
number of groups to be learned automatically from the data.
The IRM is hampered by the assumption that each object
is assumed to belong to a single group. In this paper, we
introduced a mixed-membership model that allows each ob-
ject to belong simultaneously to several groups. Our model
is based on a hierarchical version of the CRP (namely, the
Chinese Restaurant Franchise) and inference can be read-
ily performed using Gibbs sampling. The proposed model
combines all the advantages of the IRM and superior perfor-
mance in several synthetic and real-world applications. In
particular, our model is expressive enough that it can han-
dle an important problem in social information processing,
where one account (say on Amazon.com) is used by several
people (like a family) with different interests and hobbies.
Future work include extensions for hierarchical group struc-
tures and inclusion of time.
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